If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(b+45)+90+(2b-90)+b=540
We move all terms to the left:
3/2b+(b+45)+90+(2b-90)+b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 14+5/7x-20=4(2/7x-1) | | 3(5x+2=-39 | | 5n+20=180 | | -0.10(57)+0.45x=0.05(x-18) | | x/5+6.2=−6.3 | | x5+6.2=−6.3 | | 2/3y+9=7 | | X^2+11x-87=0 | | (x=16)+(4x-5) | | 3(x+3)+×=2(×-1)+3 | | 2(k+6)=10+3k | | 4n-6=5n | | 8y-4+2(4y+1)=-2(y+9) | | 2/9y+1/3y=5-y/6 | | -0.10(16)+0.45x=0.05(x-16) | | 8x-7+6x-3=1 | | 5x+2=25x-8 | | 8*13=3u | | 3(u-3)-1=-2(-2u+3)-7u | | x+7/18=1/9+x-8/7 | | 3x3-4x2+3x-4x=-2 | | 0.15y+0.03(y+5000)=1410 | | 5v+1-3(-3v-3)=2(v-4) | | 3w=w(3) | | 7(u+3)=-3(5u-3)+7u | | 12t+4=2t+8+2t-4 | | (7+z)(5z-2)=0 | | 2x+4(1-3x)=8+7(-5x+3) | | 6(2x-3)+3=3(3x+4) | | -102=-11x+74 | | 16r-36=5r-14 | | -17-17c=-14c+16 |