If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(b+45)+b+90+(2b-90)=540
We move all terms to the left:
3/2b+(b+45)+b+90+(2b-90)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 7z=8z=7 | | 7-x/2=-17 | | 2/5t+1=3 | | 8(1+3n)=200 | | 4n+17=53 | | 4(8x-4)=16 | | -9c+5=1-10c | | 4(8x-4=16 | | 5a-3(2a-4)+a=12 | | 12q-8=13q+5 | | 6(4r+3)-7r=-18r-3r | | 17/4+3a/8=4a/5 | | 6x-4-5x=20 | | -2x+6=7-2x | | -2-2(1+5x)=56 | | -6(4r+3)-7r=18-3r | | 3(9x+2)=27x-5 | | 8x+29=59 | | -9x-247=98+6x | | 29=5-4x | | 3x-8°=180° | | 7n-2=7(3-5)-3(n+7) | | -4m+4=8-7m-1 | | 3x-25=7x+7 | | 5x-4+9=-3x-2+13 | | -8x+7=-x | | 468=18x(-3)+40 | | x+2/5+6=21 | | N+6=-6+3n | | 8a+2(4a-1)=14 | | 3.x+3=2.x+5 | | 2(4x+4)+26=12x+5-4x+29 |