3/2b+b+(b+45)+(2b+90)+90=540

Simple and best practice solution for 3/2b+b+(b+45)+(2b+90)+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2b+b+(b+45)+(2b+90)+90=540 equation:



3/2b+b+(b+45)+(2b+90)+90=540
We move all terms to the left:
3/2b+b+(b+45)+(2b+90)+90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+3/2b+(b+45)+(2b+90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45+90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b+90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b+180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-630b+3=0
a = 8; b = -630; c = +3;
Δ = b2-4ac
Δ = -6302-4·8·3
Δ = 396804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396804}=\sqrt{4*99201}=\sqrt{4}*\sqrt{99201}=2\sqrt{99201}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99201}}{2*8}=\frac{630-2\sqrt{99201}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99201}}{2*8}=\frac{630+2\sqrt{99201}}{16} $

See similar equations:

| 3x-4=4x+8-x | | 25+50c=5+10c | | x^2-36=38 | | 4X+6Y=24y= | | 25+50c=5 | | -8-x=x=4x | | -77+121=x | | 12=-x+11 | | √​x^2−36​​=8 | | 4x-28+24=48 | | 8=-3x+11 | | 2m6(3)=5 | | 7y-8=9(y-2) | | w-3/9=4 | | 3f-18+-5=4 | | 4.5g-9.49=17.77+13.9g | | 0.06(3a-2)=0.2(a+2) | | 7y-8=9y-18 | | 300x=120,000 | | 15.99+0.09x=16.49+0.15x | | -3(2-2p)+2p=2(3p+3) | | 1/2y+1/4y=-6 | | 4p+4p+15=-5+9p | | x-7-5x=5 | | 2y-4(y+5)=-16 | | D+7m=14 | | -140=18+4(5y-8) | | 17m-17m+14m+9=-19 | | 2x^-81=0 | | 2m-6(2)=5 | | 1,5+5(x-3)+10x=0 | | -3-13s=-15s+17 |

Equations solver categories