If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+b+(b+45)+90+(2b+90)=540
We move all terms to the left:
3/2b+b+(b+45)+90+(2b+90)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b+90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45+90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b+90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b+180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-630b+3=0
a = 8; b = -630; c = +3;
Δ = b2-4ac
Δ = -6302-4·8·3
Δ = 396804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396804}=\sqrt{4*99201}=\sqrt{4}*\sqrt{99201}=2\sqrt{99201}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99201}}{2*8}=\frac{630-2\sqrt{99201}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99201}}{2*8}=\frac{630+2\sqrt{99201}}{16} $
| X+3x-3=13 | | 25t^2+46t-2=0 | | 3w/15=4/5 | | 16m+35-11m=593 | | (1/6)×6z=12×(1/6) | | 1000-100-10=a | | 11x-14=10+10x | | -2÷x=-5-5x | | -6+3z=7+3z | | 4+2.2x=1-2.8x | | 2y+8=9=27 | | -16=-2n-6n | | 1000-(100-10)=x | | -21=k-17 | | 6=|2x-9| | | -2/x=-5-5x | | p-0.29=28.76 | | 3x=8=14 | | -7+4x=-x+48 | | -2(3x+4)=2-(x-2) | | q+1=-6q-3+8q+4 | | 3=4(x+7)-10 | | 1.29x+10=34+9.9x | | 4x+3=-2+4 | | 4=20(w/150) | | -7x+-35=21 | | 2(m=3)=18 | | -5x-9=x-57 | | -11x-0.08+7x=16 | | 64–6x=9x+100 | | 2.4x+8.3=47.8 | | (x-3)^2=x^2+2x+1 |