If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2c-3c+4=5/2c+7+3
We move all terms to the left:
3/2c-3c+4-(5/2c+7+3)=0
Domain of the equation: 2c!=0
c!=0/2
c!=0
c∈R
Domain of the equation: 2c+7+3)!=0We add all the numbers together, and all the variables
We move all terms containing c to the left, all other terms to the right
2c+3)!=-7
c∈R
3/2c-3c-(5/2c+10)+4=0
We add all the numbers together, and all the variables
-3c+3/2c-(5/2c+10)+4=0
We get rid of parentheses
-3c+3/2c-5/2c-10+4=0
We multiply all the terms by the denominator
-3c*2c-10*2c+4*2c+3-5=0
We add all the numbers together, and all the variables
-3c*2c-10*2c+4*2c-2=0
Wy multiply elements
-6c^2-20c+8c-2=0
We add all the numbers together, and all the variables
-6c^2-12c-2=0
a = -6; b = -12; c = -2;
Δ = b2-4ac
Δ = -122-4·(-6)·(-2)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{6}}{2*-6}=\frac{12-4\sqrt{6}}{-12} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{6}}{2*-6}=\frac{12+4\sqrt{6}}{-12} $
| -0.49x+0.29x=5.8 | | x2/3=-59/4 | | 6m-16m=-18 | | 36=u/4+17 | | 4c-12=4 | | 9d–6d+2d+1=11 | | 4-5p=44 | | -3(3k+2)=-24 | | 5x-4(5x+10)=-145 | | 36=u/4=12 | | x-(.15x)=198 | | G-10+1g=15+3g | | 60+0.50x=30+0.70x | | 69=5w-16 | | -5b+24=- | | a÷3+1=12 | | 2x-30=x-28 | | ×+10+x+14=22 | | -5|9y-1|-5=-45 | | -8=z/4-11 | | 52-30x=12x-32 | | -6x+2(6x-13)=46 | | x2/3=-143/4 | | 60x+0.50=30x+0.70 | | 2x÷7+2=12 | | 1/6d-2/3=1/4(d-2) | | 8w+54=164 | | 3(2k-4)+6=5(2k+3)-1 | | 1/2|x+5|-3=1 | | 2h/3-9=2/3 | | 5.5q-5.7-5.4q=-0.9-1.5 | | -3-3x=-4(2x+5) |