If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2p-5+9/4p=7-5/4p
We move all terms to the left:
3/2p-5+9/4p-(7-5/4p)=0
Domain of the equation: 2p!=0
p!=0/2
p!=0
p∈R
Domain of the equation: 4p!=0
p!=0/4
p!=0
p∈R
Domain of the equation: 4p)!=0We add all the numbers together, and all the variables
p!=0/1
p!=0
p∈R
3/2p+9/4p-(-5/4p+7)-5=0
We get rid of parentheses
3/2p+9/4p+5/4p-7-5=0
We calculate fractions
12p/8p^2+(10p+9)/8p^2-7-5=0
We add all the numbers together, and all the variables
12p/8p^2+(10p+9)/8p^2-12=0
We multiply all the terms by the denominator
12p+(10p+9)-12*8p^2=0
Wy multiply elements
-96p^2+12p+(10p+9)=0
We get rid of parentheses
-96p^2+12p+10p+9=0
We add all the numbers together, and all the variables
-96p^2+22p+9=0
a = -96; b = 22; c = +9;
Δ = b2-4ac
Δ = 222-4·(-96)·9
Δ = 3940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3940}=\sqrt{4*985}=\sqrt{4}*\sqrt{985}=2\sqrt{985}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{985}}{2*-96}=\frac{-22-2\sqrt{985}}{-192} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{985}}{2*-96}=\frac{-22+2\sqrt{985}}{-192} $
| 3p=21/7 | | 7x=11=4 | | 9-3t=15 | | 18069333=(1/3)(440)(440)(h) | | mXm+10=15m-34 | | G(x)=-2x^2-10x | | 4x+5-2x=x-9 | | 125x-100x+33950x=35875-150x | | 125x-100x+33950=55875-150x | | 2m-44=76-8m | | -2q−-4q=8 | | -3/10+x=1-10x | | 2(x+x+2)-x+4=72 | | Y=29xx=2 | | -2y-6y-9+2=31 | | F(x)=x^2+14+7 | | 5x^2+12x-21=3-2x | | -10.899=0.135(x-39.82) | | 3x^2+10x-19=11-3x | | 9=5q-2=3 | | 4+5n=2n+22 | | 96+8k=3k+63 | | 5s23=44 | | h+8.1=−8.1 | | 15=x6-1 | | 13-18r=-6r+67 | | (4z-7)(3-z)=0 | | 2(5q-5)=90 | | 3-5x=6+3x | | 38=6+y | | 12+10m=150+4m | | t-10=-82+9t |