If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2t^2=4
We move all terms to the left:
3/2t^2-(4)=0
Domain of the equation: 2t^2!=0We multiply all the terms by the denominator
t^2!=0/2
t^2!=√0
t!=0
t∈R
-4*2t^2+3=0
Wy multiply elements
-8t^2+3=0
a = -8; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-8)·3
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-8}=\frac{0-4\sqrt{6}}{-16} =-\frac{4\sqrt{6}}{-16} =-\frac{\sqrt{6}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-8}=\frac{0+4\sqrt{6}}{-16} =\frac{4\sqrt{6}}{-16} =\frac{\sqrt{6}}{-4} $
| 2x+3(2x-5)+4=x+3(3x-2)-6 | | x2−19x+102=−x-6 | | (1/16)=8^(4x-2) | | 7x+40=(1+4x) | | 4*4*4*4*3*4*4*4*4*7*4*4*4*4*29*4*4*4*4*59=x | | 58x=765 | | x^2−14x+11=11 | | 3x+6(x+1)=3(x+1)+5 | | 2(3x-4)-4x=-42 | | 14-10x=X+36 | | 4x+6-x-2=4x+6-x | | 80-6x=32 | | 80-6x=33 | | 5x+4-10=34 | | X-(x*0.05)=21351.85 | | 5.5+x=25 | | 5/6x+1/3=5/2 | | 1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2*1*2=x | | 3t+4(t-10)=t+10 | | 1*2*3*2*3*1*2*1*3*2*1*2*1*2*1*3*4*1*5*1*3=x | | x+5.72=9.49 | | 3t+4(t-10)=t-10 | | 2*8*19*30*41*47*52*64*75*86*97*109*115*120*132*137*143*154*165*171*176*188*199*211*222*233*244*250*256*267*278*289*295*301*312*324*329*335*346*357*368*374*380*391*402=x | | 9(3)-6=x | | 5*7*5*211*5*1997*5*1787*5*2877=x | | 49r^2-42=-26 | | 4x²-28x-492=0 | | 5*5*5*5*5*5*5*5=x | | 1*64*256*320*384*448*512=x | | 2q^2-59=-59 | | 2*4*16*25*36*64*81*121*144*192*288*576=x | | 1*4*16*64*128*160*192*224*256=x |