3/2x+3=4/5x+8

Simple and best practice solution for 3/2x+3=4/5x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+3=4/5x+8 equation:



3/2x+3=4/5x+8
We move all terms to the left:
3/2x+3-(4/5x+8)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+8)!=0
x∈R
We get rid of parentheses
3/2x-4/5x-8+3=0
We calculate fractions
15x/10x^2+(-8x)/10x^2-8+3=0
We add all the numbers together, and all the variables
15x/10x^2+(-8x)/10x^2-5=0
We multiply all the terms by the denominator
15x+(-8x)-5*10x^2=0
Wy multiply elements
-50x^2+15x+(-8x)=0
We get rid of parentheses
-50x^2+15x-8x=0
We add all the numbers together, and all the variables
-50x^2+7x=0
a = -50; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-50)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-50}=\frac{-14}{-100} =7/50 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-50}=\frac{0}{-100} =0 $

See similar equations:

| 19n=30 | | 15y^2+1-8y=0 | | 74x=2x+10 | | x−52=1 | | 8x=3x=20 | | -12x-144=-9-63x | | 5x+12=5(x+2x+10=4x+2 | | 3k+2=k+4 | | 141-u=194 | | 3=2b+1 | | -3x-4(-2x+4)=-56 | | 81=9(n+2) | | T=125t+8 | | m/6-34=-26 | | 114+22x+4=180 | | 2a-3=-9+4a | | 3u+6+5u=30 | | (3x-2)^2=25 | | 7.6+x=3.9 | | 4m-12=15+5 | | 9x-6+7x=16 | | 5(x-3)+9=54 | | 7k+2=k+17 | | 1.5x+3.98x=-1.6 | | −3x⋅x=1/10 | | 14-2k=6 | | F(x)=2x^2+12x+1 | | -59=-4x+3(3x-8) | | 157=98-v | | 1.5x+3.98x=11.6 | | 5x+15+7x-5=180 | | m/2+7=9 |

Equations solver categories