3/2x+4=2/5x+9

Simple and best practice solution for 3/2x+4=2/5x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+4=2/5x+9 equation:



3/2x+4=2/5x+9
We move all terms to the left:
3/2x+4-(2/5x+9)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+9)!=0
x∈R
We get rid of parentheses
3/2x-2/5x-9+4=0
We calculate fractions
15x/10x^2+(-4x)/10x^2-9+4=0
We add all the numbers together, and all the variables
15x/10x^2+(-4x)/10x^2-5=0
We multiply all the terms by the denominator
15x+(-4x)-5*10x^2=0
Wy multiply elements
-50x^2+15x+(-4x)=0
We get rid of parentheses
-50x^2+15x-4x=0
We add all the numbers together, and all the variables
-50x^2+11x=0
a = -50; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·(-50)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*-50}=\frac{-22}{-100} =11/50 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*-50}=\frac{0}{-100} =0 $

See similar equations:

| 6y-30=9(y-6) | | 7(+10+3x)=-49 | | (x+8)+(7x)+(3x+7)=180 | | 6b+4=-44 | | 18x=114 | | 2x+26=8x+2 | | 8)+10+3x)=-49 | | -4(y+8)=-2y-12 | | k/5-5=-3 | | 10c+1=9c+10 | | -12y+18=-3(5y-7)+5y | | 4y+36=8(y+4) | | -2+-2w=-3w-9+4w | | 2(4x+5)+(5x-14)=180 | | 2(x-2)=4x+4-8-2x | | 5q=200 | | 6x+10=-60+7x | | c-56=74 | | -8r+4r=2r-6 | | -2+-2w=-3w-9+4 | | (-y+5.3)+(7.2y-9)=6.2y+ | | 5x-18=-3x+8x+15 | | 56x(7)=667885 | | 56x(7)=667 | | c-56=-74 | | -2b=-3b+6 | | 56/2+3/2=y | | 14m-1=(5+8m) | | 6x+10=-60+17 | | 4x+5+5x+14=180 | | 2.3x-4=6 | | (12v+11)+30=16v+6 |

Equations solver categories