3/2x+4=4/5x+8

Simple and best practice solution for 3/2x+4=4/5x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+4=4/5x+8 equation:



3/2x+4=4/5x+8
We move all terms to the left:
3/2x+4-(4/5x+8)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+8)!=0
x∈R
We get rid of parentheses
3/2x-4/5x-8+4=0
We calculate fractions
15x/10x^2+(-8x)/10x^2-8+4=0
We add all the numbers together, and all the variables
15x/10x^2+(-8x)/10x^2-4=0
We multiply all the terms by the denominator
15x+(-8x)-4*10x^2=0
Wy multiply elements
-40x^2+15x+(-8x)=0
We get rid of parentheses
-40x^2+15x-8x=0
We add all the numbers together, and all the variables
-40x^2+7x=0
a = -40; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-40)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-40}=\frac{-14}{-80} =7/40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-40}=\frac{0}{-80} =0 $

See similar equations:

| 3x23=77 | | 6m=-64 | | 1/3(x-2)+1/5=1/9(3x+3) | | m^2-4m-15=0 | | 2/x=6/48 | | 2.4r(r-2)=0.4 | | 1a^2+36a+16=0 | | 19.00+15.00h=15.00+2.75h | | 1.6t(t-6)=0.8 | | 3m+-10=-10 | | .05x+.10(4x)=2.25 | | 5^3x=25^x-4 | | -11m+4m=15-78 | | |r+3|=-1 | | (6-2y)^2=0 | | -3(5y-1)-y=-3(y-3) | | 9x^2-18x-32=0 | | 3/4(x-2)=6 | | 25+4n=5(5+3n) | | c-19.2=34 | | 5x-3(-6x+5)=130 | | 16-13v=-29 | | -3(-9-b)=1/3(b+4) | | 1.6x-2.4=4 | | -3(4p-3)=6(2p-5) | | (7a-4)(4a-8)=0 | | 4(7-2x)=84 | | 2x-2(-3x+3=58 | | 9-t=t+4 | | 3z(2z+9)-15=0 | | 3-2x(5-2x)=4x2+X+-30 | | -3x+(-7x)=-40 |

Equations solver categories