3/2x+5=1/5x+8

Simple and best practice solution for 3/2x+5=1/5x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+5=1/5x+8 equation:



3/2x+5=1/5x+8
We move all terms to the left:
3/2x+5-(1/5x+8)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+8)!=0
x∈R
We get rid of parentheses
3/2x-1/5x-8+5=0
We calculate fractions
15x/10x^2+(-2x)/10x^2-8+5=0
We add all the numbers together, and all the variables
15x/10x^2+(-2x)/10x^2-3=0
We multiply all the terms by the denominator
15x+(-2x)-3*10x^2=0
Wy multiply elements
-30x^2+15x+(-2x)=0
We get rid of parentheses
-30x^2+15x-2x=0
We add all the numbers together, and all the variables
-30x^2+13x=0
a = -30; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-30)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-30}=\frac{-26}{-60} =13/30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-30}=\frac{0}{-60} =0 $

See similar equations:

| 2(8a-5)-7(6a+1)=9 | | -28-3x=56 | | 1-4(7p-3)=125 | | 16^2x+1=128 | | 87=5z+27 | | -11=s/4+-10’ | | -m4+(5m-5m)-1=1 | | 3x-15-5x-5=180 | | 2c-9=1 | | 10n-10=10 | | 169=4-u | | 16-5(3t-4)=8(-2t+11 | | 4.9=v/3 | | 4j-13=3 | | 282-v=122 | | 1=2-p/4 | | 4)3x+8)-7x=5(x+7)-3 | | 1/5x+3=7/10x-1/2 | | d/4=2d+124 | | 9x^2-4(3x-6)^2-36=0 | | 7=4+p/2 | | 2(3x+4)+2=4+3× | | -10x+5=7x+x | | -7(1-x)-1=-18+2x | | 154=-u+211 | | x2-8x+16=13 | | 8x-13=7x-17=180 | | -24=w+4 | | 1/2(6k+8)+8k=-41+6k | | -2x^2-5=-x | | (2x)^3x=4x | | 1=2n-3 |

Equations solver categories