3/2x+6=1/5x+10

Simple and best practice solution for 3/2x+6=1/5x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+6=1/5x+10 equation:



3/2x+6=1/5x+10
We move all terms to the left:
3/2x+6-(1/5x+10)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+10)!=0
x∈R
We get rid of parentheses
3/2x-1/5x-10+6=0
We calculate fractions
15x/10x^2+(-2x)/10x^2-10+6=0
We add all the numbers together, and all the variables
15x/10x^2+(-2x)/10x^2-4=0
We multiply all the terms by the denominator
15x+(-2x)-4*10x^2=0
Wy multiply elements
-40x^2+15x+(-2x)=0
We get rid of parentheses
-40x^2+15x-2x=0
We add all the numbers together, and all the variables
-40x^2+13x=0
a = -40; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-40)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-40}=\frac{-26}{-80} =13/40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-40}=\frac{0}{-80} =0 $

See similar equations:

| x+1=10x+10* | | 221=7x | | -4/5+1/2v=-1/3 | | y-2.83=7.35 | | u=7=11 | | -8(-5x-6)=21x+12 | | 48=w-9= | | x+7+x+7+2x=90 | | I(2x-8/3))I+5=11 | | 8+20=4(8x-7) | | -4x-62=98*6x | | 3h+5h-11=17 | | 10x-16=2x+24 | | 5x+9=49-3x | | -)z+3=7z | | -3(5x-7)=-28-8x | | 2(n-8)=17 | | 4x-28+10=30 | | -3y+7+y=5 | | 2(3x-4)=12+x | | 2(-3x+4)=20-2x | | 2.4x+2.6=27 | | 3.7x-4.2=3.2 | | 5+2x+6x=2(4x+1) | | (3/2)x+2=-1 | | 8x-36/7=12 | | 5x-4(20-x)=24+5x-3(4-x) | | 5(2-x+7)+3=-10x+38 | | 17x-3(4x+1/2)=5(x-1/2)+1 | | 15y-10y-7=48.05. | | 7+x-14-3x=2(3x+4)-7x+13 | | 3(2x+6)=-40+34 |

Equations solver categories