3/2x+7/10=1/5x+2

Simple and best practice solution for 3/2x+7/10=1/5x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+7/10=1/5x+2 equation:



3/2x+7/10=1/5x+2
We move all terms to the left:
3/2x+7/10-(1/5x+2)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+2)!=0
x∈R
We get rid of parentheses
3/2x-1/5x-2+7/10=0
We calculate fractions
350x^2/100x^2+150x/100x^2+(-20x)/100x^2-2=0
We multiply all the terms by the denominator
350x^2+150x+(-20x)-2*100x^2=0
Wy multiply elements
350x^2-200x^2+150x+(-20x)=0
We get rid of parentheses
350x^2-200x^2+150x-20x=0
We add all the numbers together, and all the variables
150x^2+130x=0
a = 150; b = 130; c = 0;
Δ = b2-4ac
Δ = 1302-4·150·0
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16900}=130$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(130)-130}{2*150}=\frac{-260}{300} =-13/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(130)+130}{2*150}=\frac{0}{300} =0 $

See similar equations:

| A=5c | | 4x-10=2-3x,x= | | 2b^2+5b-8/b^2+b+5/b+2=-3/b | | X-(3x)^(0.5)=1 | | X-(3x)^0.5=1 | | x6=(x+20)*4,8 | | 7m+12=4m+78 | | 95=-5(1-5n) | | 13(y+3)=13y+3 | | -10x/3+5=-5 | | -4+3x-x^2=0 | | x^2-17x+56=0 | | |3•(x+2)|6=24 | | 6+7(x-3)=20 | | 2^(x+1)+2^(x+2)=48 | | 0.5(x+8)+6=0.25(x+46) | | x+20x+5x=12000 | | X+2x/5+x/10=12000 | | 24-3y=24 | | 16-3y=24 | | 1.0=x/2500 | | 64-3y=24 | | 32-3y=24 | | 0-3y=24 | | 12y−2=6y+52 | | 200(1.05)^x=5000 | | 7x/2+1=3 | | 3-x/4-x=8/7 | | 7x+32=66 | | (3x-2)(x+6)=180 | | a^2(a^2-25)=-144 | | a^2(a^2-25)=-144a |

Equations solver categories