3/2x+x+(x+2)=40

Simple and best practice solution for 3/2x+x+(x+2)=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2x+x+(x+2)=40 equation:



3/2x+x+(x+2)=40
We move all terms to the left:
3/2x+x+(x+2)-(40)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
x+3/2x+(x+2)-40=0
We get rid of parentheses
x+3/2x+x+2-40=0
We multiply all the terms by the denominator
x*2x+x*2x+2*2x-40*2x+3=0
Wy multiply elements
2x^2+2x^2+4x-80x+3=0
We add all the numbers together, and all the variables
4x^2-76x+3=0
a = 4; b = -76; c = +3;
Δ = b2-4ac
Δ = -762-4·4·3
Δ = 5728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5728}=\sqrt{16*358}=\sqrt{16}*\sqrt{358}=4\sqrt{358}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-4\sqrt{358}}{2*4}=\frac{76-4\sqrt{358}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+4\sqrt{358}}{2*4}=\frac{76+4\sqrt{358}}{8} $

See similar equations:

| 11/2x+x+(x+2)=40 | | 27x+30-4•3x+120=100 | | 3.x-6=55 | | -5x+4=-10-10x | | 3(+6)=39x | | 21x-56=8x+9 | | 7x-43=3x-7 | | 3x-24=17+21x | | 7x-5=9x-9 | | 7x-55=9x+9 | | (9i)/2=18i | | x+1.2=6.46 | | 4n^2+28n-12=0 | | w+2.3=6.57 | | h−(−2,22)=−7,851 | | Y=x²+x-4/x+4 | | (X+5)²(x-2)=37 | | 6x-5=5x+10=x+15 | | 3/4x-18=2x | | x(3x-4)+1=0 | | Y+6x=-9.5 | | 2x=(11x+1) | | 12=10w-4w | | 4x+6=986. | | 0,2g-13=9 | | ―14.3=1.4―3d | | 10+2h=6 | | 5x+-1=-16 | | 3x-+3=5x-11 | | -4t-16=2(3t-8)-10t | | 2/3m-2=1/3m-4 | | 5(x–3)+11=1 |

Equations solver categories