If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2y+y=9/2y
We move all terms to the left:
3/2y+y-(9/2y)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: 2y)!=0We add all the numbers together, and all the variables
y!=0/1
y!=0
y∈R
3/2y+y-(+9/2y)=0
We add all the numbers together, and all the variables
y+3/2y-(+9/2y)=0
We get rid of parentheses
y+3/2y-9/2y=0
We multiply all the terms by the denominator
y*2y+3-9=0
We add all the numbers together, and all the variables
y*2y-6=0
Wy multiply elements
2y^2-6=0
a = 2; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·2·(-6)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*2}=\frac{0-4\sqrt{3}}{4} =-\frac{4\sqrt{3}}{4} =-\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*2}=\frac{0+4\sqrt{3}}{4} =\frac{4\sqrt{3}}{4} =\sqrt{3} $
| -4(3y-3)+7y=5(y+2) | | 11z-3z-7z+1=12 | | -1=9+d | | 4(z+3)=- | | 5(x-4)+10-6=20-5-3+1-6 | | 15r-12r-r-r=14 | | -23y=-126 | | 3+3(5v-2)=-2(3v-6)+3v | | 10=(-8)+n/4 | | 18-4x=24 | | -3.2s=28.8 | | 14=11+a/3 | | -5=0.2k | | 18g-13g-4g+1=16 | | 6w-5=-5+8(w-1) | | 2=-2x-16 | | 3+3(5v-2)=2(3v-6)+3v | | (4x/2-15/2)+(x/10-3/10)=-3 | | 3v^2-81=0 | | 5x−12=2x+24∘ | | 1250+16t^2=H | | 7x+21=16x | | 6/7+x=2/3 | | 3x+16=-4+7x | | 2y+15=-45 | | 23+88-y=99 | | -30+14y=12 | | -4(-5u+2)-3u=2(u-1)-9 | | y+4.2=6.6= | | 162=-w+211 | | 15q-10q-q=16 | | 6/m=5/6 |