3/3x+100-20=7x+800

Simple and best practice solution for 3/3x+100-20=7x+800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/3x+100-20=7x+800 equation:



3/3x+100-20=7x+800
We move all terms to the left:
3/3x+100-20-(7x+800)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
3/3x-(7x+800)+80=0
We get rid of parentheses
3/3x-7x-800+80=0
We multiply all the terms by the denominator
-7x*3x-800*3x+80*3x+3=0
Wy multiply elements
-21x^2-2400x+240x+3=0
We add all the numbers together, and all the variables
-21x^2-2160x+3=0
a = -21; b = -2160; c = +3;
Δ = b2-4ac
Δ = -21602-4·(-21)·3
Δ = 4665852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4665852}=\sqrt{36*129607}=\sqrt{36}*\sqrt{129607}=6\sqrt{129607}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2160)-6\sqrt{129607}}{2*-21}=\frac{2160-6\sqrt{129607}}{-42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2160)+6\sqrt{129607}}{2*-21}=\frac{2160+6\sqrt{129607}}{-42} $

See similar equations:

| 3/x=-4/5 | | 9−(3x^2+3x)=0 | | 9−(3x2+3x)=0 | | 49n=986=-43 | | 6q−3q−2q−q+3q=9 | | 20k+4k+3k-26k=18 | | p+41=3p+19 | | 7k+2k-3k=6 | | 5z+58=180 | | 11r+3r-r-9r+3r=14 | | 2u-75=u-29 | | 4/6=6/n | | 27=7c | | 10s-9s=11 | | 2a+46=6a+38 | | 26x^2-90x+116=0 | | 4u-36=6u-100 | | 9d-6d=12 | | 26x^2-90x+156=0 | | y/5+7.3=-5.2 | | 6v-2v=4 | | s=3s-72 | | 10b-72=b | | 2^x=1.08 | | 3y+17=-17 | | 3x+80=12x+71 | | −15v−28=3(−5v+4) | | (x+6)^2=2x^2+18x+41 | | -8(y-3)=6y+32 | | 2p+21=p+75 | | C(n)=3n+25 | | 2p+68=p+73 |

Equations solver categories