If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4(16x-20)=1/3(27x+18)
We move all terms to the left:
3/4(16x-20)-(1/3(27x+18))=0
Domain of the equation: 4(16x-20)!=0
x∈R
Domain of the equation: 3(27x+18))!=0We calculate fractions
x∈R
(9x2/(4(16x-20)*3(27x+18)))+(-4x1/(4(16x-20)*3(27x+18)))=0
We calculate terms in parentheses: +(9x2/(4(16x-20)*3(27x+18))), so:
9x2/(4(16x-20)*3(27x+18))
We multiply all the terms by the denominator
9x2
We add all the numbers together, and all the variables
9x^2
Back to the equation:
+(9x^2)
We calculate terms in parentheses: +(-4x1/(4(16x-20)*3(27x+18))), so:We get rid of parentheses
-4x1/(4(16x-20)*3(27x+18))
We multiply all the terms by the denominator
-4x1
We add all the numbers together, and all the variables
-4x
Back to the equation:
+(-4x)
9x^2-4x=0
a = 9; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·9·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*9}=\frac{8}{18} =4/9 $
| 0.3x2-16=9.9 | | 4x–3x=15 | | (x-3)(x+0.4)=0 | | -1.2y+5=1.4= | | 4x+10=-40 | | 3/5x+8=14 | | x-6)=8x-3(3x+7) | | 6x+3=8-7x | | x+11+x=73 | | 2(2x-11)=-4(-7x+1) | | -3/f=-7 | | 3x+12=7x-32=180 | | 3x+12=7x-32=90 | | Y=1/4y-12 | | 9/4(8x–4+4/3x)=2–x | | -3x+4-2=10x | | -2x+10=2x+4 | | -3+4-2=10x | | 3x+8=26-5x | | ?x5=30 | | 10+3a=-32 | | 6(b-4)=-30 | | 11k+9+12=65= | | 11+7.3n=7+7.7n | | (3/5)^-1=x | | 51=16+7/11y | | (3/5)^(-1)=x | | (3/5)-1=x | | 0.126y+19=21 | | 2k+6-3k=-4= | | -2(2x/3)=-4(x/1)-2 | | 7(y-8)+24=13/9(y-6) |