If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4(24x+20)-8=-1/2(12x-18)
We move all terms to the left:
3/4(24x+20)-8-(-1/2(12x-18))=0
Domain of the equation: 4(24x+20)!=0
x∈R
Domain of the equation: 2(12x-18))!=0We calculate fractions
x∈R
(6x1/(4(24x+20)*2(12x-18)))+(-(-4x2)/(4(24x+20)*2(12x-18)))-8=0
We calculate terms in parentheses: +(6x1/(4(24x+20)*2(12x-18))), so:
6x1/(4(24x+20)*2(12x-18))
We multiply all the terms by the denominator
6x1
We add all the numbers together, and all the variables
6x
Back to the equation:
+(6x)
We calculate terms in parentheses: +(-(-4x2)/(4(24x+20)*2(12x-18))), so:determiningTheFunctionDomain 4x^2+6x-8=0
-(-4x2)/(4(24x+20)*2(12x-18))
We add all the numbers together, and all the variables
-(-4x^2)/(4(24x+20)*2(12x-18))
We multiply all the terms by the denominator
-(-4x^2)
We get rid of parentheses
4x^2
Back to the equation:
+(4x^2)
a = 4; b = 6; c = -8;
Δ = b2-4ac
Δ = 62-4·4·(-8)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{41}}{2*4}=\frac{-6-2\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{41}}{2*4}=\frac{-6+2\sqrt{41}}{8} $
| 2(5-3x)=-44 | | 30+t=12+3t | | x-555=1665 | | -3(y=3)=2y=3 | | 30+t=12+t | | 6.6y=44 | | 2x-4/3=8/9x | | 2x+11+3x-24=90 | | 3(4–x)–5x=52 | | d÷1.3=2.8 | | 4(x-3)+2(3x+4)=76 | | 2y-6=16y+50 | | 4(-1+2x)=-20 | | 3.3+10m=6.69 | | 0.3x-1.2=1.5 | | 7+13-2t=9+5t | | 1/3y+1/4=15/12 | | 5x-7+4x+18=90 | | 4.5+10m=7.16 | | 3x-4=4(3-19) | | 9+21=-3(3x-9) | | 5/6y=-5/9 | | -6p=-11 | | 4(2x−3)=12 | | 2(5+4(1)=x | | -18=-4+v/2 | | -3.1a=24.8 | | 2f−2=f+8 | | 3x+15-7x=-7= | | 2b=-8+3b | | 4x+15=295 | | -7=a+20/2 |