3/4(x)+15=1/3(x)+10

Simple and best practice solution for 3/4(x)+15=1/3(x)+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4(x)+15=1/3(x)+10 equation:



3/4(x)+15=1/3(x)+10
We move all terms to the left:
3/4(x)+15-(1/3(x)+10)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x+10)!=0
x∈R
We get rid of parentheses
3/4x-1/3x-10+15=0
We calculate fractions
9x/12x^2+(-4x)/12x^2-10+15=0
We add all the numbers together, and all the variables
9x/12x^2+(-4x)/12x^2+5=0
We multiply all the terms by the denominator
9x+(-4x)+5*12x^2=0
Wy multiply elements
60x^2+9x+(-4x)=0
We get rid of parentheses
60x^2+9x-4x=0
We add all the numbers together, and all the variables
60x^2+5x=0
a = 60; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·60·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*60}=\frac{-10}{120} =-1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*60}=\frac{0}{120} =0 $

See similar equations:

| 23x+166=180 | | 12/5(x)=2 | | 2/3(x+5)=x/4 | | 11y+126=180 | | 6k−9=7k | | w/12-w/8=1/12 | | -11x+37=14x-15+x | | 5y=2y-42-5y | | 3-4s/3=5 | | -13/4+x=8 | | 3|x-5|-16=2 | | y/2+9y/4=y/8 | | (5/r)+(2/7r)=1 | | 10(x-3)+8=9(2x-6) | | 2x*8x-4=70 | | 2.3+v/3=-5.2 | | 3x-(x-2)=6+7x | | 3.1+v/4=-3.3 | | 286=34-w | | 5/r+2/7r=1 | | 6x+10=2(3x+11) | | X/2+80=2f | | 4.5−1.5(6m+2)=6 | | -3m+9=-3(m+3) | | (2x)+(x+33)=90 | | 2(3)+1=5x-8 | | -14.9=u/5-2.4 | | (2x)+(x+33)=180 | | m/2-3=-5 | | 17-v=185 | | 6x+5x−25=−5x−28 | | 2x+1=8x-8 |

Equations solver categories