3/4(z)-2=-7/8(z)+3

Simple and best practice solution for 3/4(z)-2=-7/8(z)+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4(z)-2=-7/8(z)+3 equation:



3/4(z)-2=-7/8(z)+3
We move all terms to the left:
3/4(z)-2-(-7/8(z)+3)=0
Domain of the equation: 4z!=0
z!=0/4
z!=0
z∈R
Domain of the equation: 8z+3)!=0
z∈R
We get rid of parentheses
3/4z+7/8z-3-2=0
We calculate fractions
24z/32z^2+28z/32z^2-3-2=0
We add all the numbers together, and all the variables
24z/32z^2+28z/32z^2-5=0
We multiply all the terms by the denominator
24z+28z-5*32z^2=0
We add all the numbers together, and all the variables
52z-5*32z^2=0
Wy multiply elements
-160z^2+52z=0
a = -160; b = 52; c = 0;
Δ = b2-4ac
Δ = 522-4·(-160)·0
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2704}=52$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-52}{2*-160}=\frac{-104}{-320} =13/40 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+52}{2*-160}=\frac{0}{-320} =0 $

See similar equations:

| 6x+78+90=180 | | 5x+(x-100)=3905 | | 19^x+5-9=3 | | 6x-83+29+90=180 | | 5(6x-4)-3(3x-15)=5(4x+4)-13 | | x+47+90=180 | | 2^2x-2(2^-x)=8 | | X(x)=0.75x+1 | | 14x+48+90=180 | | 6=u+12 | | 6x-60+90=180 | | -207=-3-9(1-4x) | | -3(12-m=-1(m-8) | | 6(x+3)=3.x+3.6 | | 20x+50+90=180 | | 14=3w | | 13^7x-10=-8 | | 6+16s-2=8s+82-5s | | -9=-7y+2(y+8) | | 12x-78+90=180 | | 6^-3x-3=6^2x-1 | | 64(2*y)+132=1040 | | 4x-5x=-x+3 | | -143=-5+6(1-4b) | | (x+5)^2=35 | | 9+3n-4=7n+14-3n | | (x+15)/(x+24)=22/16 | | 23=3w-17 | | 3(2x−6)32+7=199 | | 3x+33+90=180 | | -x=4x-35 | | 6-9p=312 |

Equations solver categories