3/412c-4=15c+15

Simple and best practice solution for 3/412c-4=15c+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/412c-4=15c+15 equation:



3/412c-4=15c+15
We move all terms to the left:
3/412c-4-(15c+15)=0
Domain of the equation: 412c!=0
c!=0/412
c!=0
c∈R
We get rid of parentheses
3/412c-15c-15-4=0
We multiply all the terms by the denominator
-15c*412c-15*412c-4*412c+3=0
Wy multiply elements
-6180c^2-6180c-1648c+3=0
We add all the numbers together, and all the variables
-6180c^2-7828c+3=0
a = -6180; b = -7828; c = +3;
Δ = b2-4ac
Δ = -78282-4·(-6180)·3
Δ = 61351744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{61351744}=\sqrt{64*958621}=\sqrt{64}*\sqrt{958621}=8\sqrt{958621}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7828)-8\sqrt{958621}}{2*-6180}=\frac{7828-8\sqrt{958621}}{-12360} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7828)+8\sqrt{958621}}{2*-6180}=\frac{7828+8\sqrt{958621}}{-12360} $

See similar equations:

| 5x+23=23 | | 88m=11 | | z/8–2=1 | | z/8– 2= 1 | | 7x=15=12x=5 | | 5/6n=$150.60 | | -14/3=-7u | | 4(-3/2v+1)-6=5v-(11v+1) | | 2a-5=6a+11 | | 5/6n=150.60 | | 54=1/2h(6+3) | | 2m-16=10 | | 18=3/8x | | 8j-6j-1=11 | | 24=1.25+2l | | 2 = p/6– 2 | | 7-x/4=10 | | 6y+8=32y-7 | | 450+3x=x+450-x | | 6j-3j+5=17 | | 5x+12=4x-20 | | 2{p+5}-3=4p+23 | | 2x-10=7+3x | | 6x-8x=6x-10x+2 | | 216x-2=(1÷1296) | | x+1/2=2/3x-1/2 | | 8.5=w-12 | | 100=10+9q | | 2k+40-18=230 | | -5/26+x=-7/13 | | 14r+16=16 | | 48+44+x+x=180 |

Equations solver categories