3/4k+7/10=11/15k-2

Simple and best practice solution for 3/4k+7/10=11/15k-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4k+7/10=11/15k-2 equation:



3/4k+7/10=11/15k-2
We move all terms to the left:
3/4k+7/10-(11/15k-2)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 15k-2)!=0
k∈R
We get rid of parentheses
3/4k-11/15k+2+7/10=0
We calculate fractions
420k^2/600k^2+450k/600k^2+(-440k)/600k^2+2=0
We multiply all the terms by the denominator
420k^2+450k+(-440k)+2*600k^2=0
Wy multiply elements
420k^2+1200k^2+450k+(-440k)=0
We get rid of parentheses
420k^2+1200k^2+450k-440k=0
We add all the numbers together, and all the variables
1620k^2+10k=0
a = 1620; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·1620·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*1620}=\frac{-20}{3240} =-1/162 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*1620}=\frac{0}{3240} =0 $

See similar equations:

| 10-6h=6-10h | | 18c+c+8=-11 | | -15k=-10-14k | | 10+3s=-4s-2+9s | | 18−4f=-2 | | 10=3n+7 | | 5/6=(y+5)/7 | | 21r^2=16-16r | | 1/4x+6=1/2x+4 | | 4x^2+25x=36 | | 3.23+9.2f=7.9f−17.96 | | 2q-9=10-2q+5 | | k/17=36 | | 2d-7/2=2+4d/3 | | 4x-x-2x+2x=18 | | 7(-2-5x)=84 | | 43(x+2)=0 | | 43(x+2)=6 | | -3x+6=-13 | | 3(3r+5)=2(5r+3) | | 20-4i=12 | | (6x+8)=(5x-7) | | 43(x+2)=3 | | 4/5+x=-x+34/5* | | 3.23+9.2f=7.9-17.96 | | 7x-1=-5x+7 | | -6m+14m+-7=9 | | 24=7y=4 | | 3(z-1)+1(z+4)=27 | | Y=-31+4x | | 13−20m=-10m−11−12m | | 12w+2=20+13w |

Equations solver categories