3/4k+7=1/8k+27

Simple and best practice solution for 3/4k+7=1/8k+27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4k+7=1/8k+27 equation:



3/4k+7=1/8k+27
We move all terms to the left:
3/4k+7-(1/8k+27)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 8k+27)!=0
k∈R
We get rid of parentheses
3/4k-1/8k-27+7=0
We calculate fractions
24k/32k^2+(-4k)/32k^2-27+7=0
We add all the numbers together, and all the variables
24k/32k^2+(-4k)/32k^2-20=0
We multiply all the terms by the denominator
24k+(-4k)-20*32k^2=0
Wy multiply elements
-640k^2+24k+(-4k)=0
We get rid of parentheses
-640k^2+24k-4k=0
We add all the numbers together, and all the variables
-640k^2+20k=0
a = -640; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-640)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-640}=\frac{-40}{-1280} =1/32 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-640}=\frac{0}{-1280} =0 $

See similar equations:

| x-1+2x-15=11 | | 11g−8g−1=11 | | 30x+1=180 | | 17+3x=7x+3 | | -2x3+13x2+4x-58=x-2 | | 9+7x-9=3x+5-4(2-x) | | 3(z+8)=48 | | 1/6m-5=-8 | | 8x+10x-2+5x+3+7x=180 | | 4(5-1)=14x+3 | | 4(5-0)=14x+3 | | 2/5x-1.2=1.6 | | -1.8a+1.4+0.7a=7.4+0.5a | | (x−1)2/3=4 | | 4(5-(-1))=14x+3 | | -3+k/2=-10 | | 4(5-(-2))=14x+3 | | -1/4(x+5)=8 | | 2+3(x-4)=14 | | 3d-8=6d+1 | | 41.56=6.3-(-8.2)x | | -5+7y=43-7 | | 45s+1=9 | | 8(c-14)=8 | | 3/5x+x=232 | | 5c-5=2c+10 | | (4/x+6)+(5/x-6)=6 | | 32=5p-23 | | 4+w6=10 | | -5(2f-1)=5 | | 4b+10=6b+6 | | 4/x+6+5/x-6=6 |

Equations solver categories