If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4x+100-20=7x+800
We move all terms to the left:
3/4x+100-20-(7x+800)=0
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
3/4x-(7x+800)+80=0
We get rid of parentheses
3/4x-7x-800+80=0
We multiply all the terms by the denominator
-7x*4x-800*4x+80*4x+3=0
Wy multiply elements
-28x^2-3200x+320x+3=0
We add all the numbers together, and all the variables
-28x^2-2880x+3=0
a = -28; b = -2880; c = +3;
Δ = b2-4ac
Δ = -28802-4·(-28)·3
Δ = 8294736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8294736}=\sqrt{16*518421}=\sqrt{16}*\sqrt{518421}=4\sqrt{518421}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2880)-4\sqrt{518421}}{2*-28}=\frac{2880-4\sqrt{518421}}{-56} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2880)+4\sqrt{518421}}{2*-28}=\frac{2880+4\sqrt{518421}}{-56} $
| 4/3x=5/6 | | 3/3x+100-20=7x+800 | | 3/x=-4/5 | | 9−(3x^2+3x)=0 | | 9−(3x2+3x)=0 | | 49n=986=-43 | | 6q−3q−2q−q+3q=9 | | 20k+4k+3k-26k=18 | | p+41=3p+19 | | 7k+2k-3k=6 | | 5z+58=180 | | 11r+3r-r-9r+3r=14 | | 2u-75=u-29 | | 4/6=6/n | | 27=7c | | 10s-9s=11 | | 2a+46=6a+38 | | 26x^2-90x+116=0 | | 4u-36=6u-100 | | 9d-6d=12 | | 26x^2-90x+156=0 | | y/5+7.3=-5.2 | | 6v-2v=4 | | s=3s-72 | | 10b-72=b | | 2^x=1.08 | | 3y+17=-17 | | 3x+80=12x+71 | | −15v−28=3(−5v+4) | | (x+6)^2=2x^2+18x+41 | | -8(y-3)=6y+32 | | 2p+21=p+75 |