3/4x+15=45-4x+3

Simple and best practice solution for 3/4x+15=45-4x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+15=45-4x+3 equation:



3/4x+15=45-4x+3
We move all terms to the left:
3/4x+15-(45-4x+3)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x-(-4x+48)+15=0
We get rid of parentheses
3/4x+4x-48+15=0
We multiply all the terms by the denominator
4x*4x-48*4x+15*4x+3=0
Wy multiply elements
16x^2-192x+60x+3=0
We add all the numbers together, and all the variables
16x^2-132x+3=0
a = 16; b = -132; c = +3;
Δ = b2-4ac
Δ = -1322-4·16·3
Δ = 17232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17232}=\sqrt{16*1077}=\sqrt{16}*\sqrt{1077}=4\sqrt{1077}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-132)-4\sqrt{1077}}{2*16}=\frac{132-4\sqrt{1077}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-132)+4\sqrt{1077}}{2*16}=\frac{132+4\sqrt{1077}}{32} $

See similar equations:

| 4z+9=2z+16 | | j+2=-7 | | 16=6u+u | | 10=6g-4g | | X-0.5(x+38)=0 | | 7+3q=12+3q | | 8=7r-5r | | 2x+5+3x+x=22 | | 7/4*x=21 | | 3x^2=192√x | | -30=5(x+2) | | 6v+2=-28 | | 2n+18=-2-3n | | 3x^2-192√x=0 | | -54=-(1=3x)= | | (2x+2)=(5x+3)=(2x+2)=(5x+3) | | 10+x=5(1-5x+2) | | |4x+8|+12=4 | | 20x=8.40 | | 1/4x-5=10/1/2 | | 6x+2=9x+12 | | 35a-29=14-4a | | 6=(3/2+3y) | | 5(x+4)-1=2x+3(5+x) | | 6+4r=r-6 | | 8x+-x=25-20 | | 17b=+84 | | (6x+4)+(10x-9)+(8x-7)=180 | | 4a+22+6a-5=90 | | 4a+20+7a-5=90 | | 1+4x=-57x | | 4a+20+8a-5=90 |

Equations solver categories