3/4x+16=1/8x+2

Simple and best practice solution for 3/4x+16=1/8x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+16=1/8x+2 equation:



3/4x+16=1/8x+2
We move all terms to the left:
3/4x+16-(1/8x+2)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x+2)!=0
x∈R
We get rid of parentheses
3/4x-1/8x-2+16=0
We calculate fractions
24x/32x^2+(-4x)/32x^2-2+16=0
We add all the numbers together, and all the variables
24x/32x^2+(-4x)/32x^2+14=0
We multiply all the terms by the denominator
24x+(-4x)+14*32x^2=0
Wy multiply elements
448x^2+24x+(-4x)=0
We get rid of parentheses
448x^2+24x-4x=0
We add all the numbers together, and all the variables
448x^2+20x=0
a = 448; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·448·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*448}=\frac{-40}{896} =-5/112 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*448}=\frac{0}{896} =0 $

See similar equations:

| 18/g-11=9(-2+1/g)+8 | | 7(c+1)=6+6c | | (-1/6d=-4 | | 2×-5=4x-1 | | x+(3x-5)=75 | | 7y-3=5-3y | | 5-x/3=30 | | x+x+(x/6)+(x/6)=1 | | x+28=-58 | | 2k^2=10 | | 4k-40=-14k+14 | | 5x+1-x=7+3x-1 | | 3-y/2+2y=71 | | 518+49x=784+101x | | 5x+2=3x= | | x^2=16+(x-4/x+4) | | 5x-3(x-4)=-9+5x+12 | | 4(5x+2)=20 | | -n-23=5-3n | | 31=5-6x+8-x | | (2x+6)=(9x-4) | | s/4=21 | | -n-5=10-4n | | 8x-2=12/x | | 8x+1=5+4x | | 2•3.14•r=40 | | 15r^2+34r-16=0 | | x^2=(16+(x-4)/(x+4)) | | 11n=8/5 | | 2.7=5.4-8.1x | | 12+6r=r+7r | | x+4.8=8.77 |

Equations solver categories