3/4x+17=-9x+7x+37

Simple and best practice solution for 3/4x+17=-9x+7x+37 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+17=-9x+7x+37 equation:



3/4x+17=-9x+7x+37
We move all terms to the left:
3/4x+17-(-9x+7x+37)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x-(-2x+37)+17=0
We get rid of parentheses
3/4x+2x-37+17=0
We multiply all the terms by the denominator
2x*4x-37*4x+17*4x+3=0
Wy multiply elements
8x^2-148x+68x+3=0
We add all the numbers together, and all the variables
8x^2-80x+3=0
a = 8; b = -80; c = +3;
Δ = b2-4ac
Δ = -802-4·8·3
Δ = 6304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6304}=\sqrt{16*394}=\sqrt{16}*\sqrt{394}=4\sqrt{394}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-4\sqrt{394}}{2*8}=\frac{80-4\sqrt{394}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+4\sqrt{394}}{2*8}=\frac{80+4\sqrt{394}}{16} $

See similar equations:

| 7x+5(2-x)=-10 | | 4m-14=-32+m | | 12q+5-9q=10 | | 227+5(x−3)=227 | | -3(k+5)-(k+5)=23 | | 2(^3x)=1/64 | | 8k^+27k-17=3k^+8+7k | | x^2-44x+315=0 | | 28x^2+37x+12=0 | | -3r-10=14 | | (X+5)+(3x-1)+(4x-2)=66 | | -6x-16=38 | | 3v+15=51 | | 6y+43=7 | | 6w+6=4(w+6) | | 35=5/3y | | 3b=240 | | 8x-7=3(2x+7)-5 | | 8.5/11=x/15 | | 110+14+(7x+7)=180 | | 40=4u | | -2(11-12x)=-4(1-$ | | 10=x-0.01x | | 8c+3c=44 | | 24+8x=40x+64+8x | | x+1÷2=4 | | 24+8=40x+64+8x | | x-3x=-48 | | -4-4x-4=-24+8x | | 14n-56=-39+3n | | Y=×+32y=6×+21 | | 14m-7-3/5=24/5-18/5m |

Equations solver categories