3/4x+1=2/3x+3

Simple and best practice solution for 3/4x+1=2/3x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+1=2/3x+3 equation:



3/4x+1=2/3x+3
We move all terms to the left:
3/4x+1-(2/3x+3)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x+3)!=0
x∈R
We get rid of parentheses
3/4x-2/3x-3+1=0
We calculate fractions
9x/12x^2+(-8x)/12x^2-3+1=0
We add all the numbers together, and all the variables
9x/12x^2+(-8x)/12x^2-2=0
We multiply all the terms by the denominator
9x+(-8x)-2*12x^2=0
Wy multiply elements
-24x^2+9x+(-8x)=0
We get rid of parentheses
-24x^2+9x-8x=0
We add all the numbers together, and all the variables
-24x^2+x=0
a = -24; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-24)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-24}=\frac{-2}{-48} =1/24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-24}=\frac{0}{-48} =0 $

See similar equations:

| b+68+b+63+47b=180 | | -3m+2=-7m14 | | 25n+350=3225 | | x/12=130 | | -166x=-6(x+3) | | 2×+7=12-3x | | x/250=508/12.5 | | 4^(2x+7)=64 | | 8n2(n+5)=-3+6n | | -5(-5+4a)=-238a | | -3(5x-1)+4x=-63 | | (8x+7)+(12x-9)=180 | | -2m^2+10m=-6 | | A(n)=-0.5n+18 | | X-9=2y | | A(n)=-0.5+18 | | 4(y+1)+5=6(y=1)+y | | y=26.607-3.044(180) | | 7x+14+49+75=180 | | x-6/4-1x=-8 | | 180=-26.607-3.044x | | 2(10+x)=31 | | 5x-14+42+57=180 | | -x+1/5*5x=41/5 | | b+(-20)=-19 | | -3=r/7-1 | | -3(2+1)=-2(3x-4) | | 11^x-7=16^-4x | | c-(-16)=-19 | | x-(-18)=-19 | | 0=X^+3x-28 | | y-(-19)=-13 |

Equations solver categories