If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4x+3-2/3x=2+5/6
We move all terms to the left:
3/4x+3-2/3x-(2+5/6)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
3/4x-2/3x+3-(5/6+2)=0
We get rid of parentheses
3/4x-2/3x+3-2-5/6=0
We calculate fractions
(-180x^2)/432x^2+324x/432x^2+(-288x)/432x^2+3-2=0
We add all the numbers together, and all the variables
(-180x^2)/432x^2+324x/432x^2+(-288x)/432x^2+1=0
We multiply all the terms by the denominator
(-180x^2)+324x+(-288x)+1*432x^2=0
Wy multiply elements
(-180x^2)+432x^2+324x+(-288x)=0
We get rid of parentheses
-180x^2+432x^2+324x-288x=0
We add all the numbers together, and all the variables
252x^2+36x=0
a = 252; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·252·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*252}=\frac{-72}{504} =-1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*252}=\frac{0}{504} =0 $
| 3/4+3-2/3x=25/6 | | 7m+3=5m+11. | | 2.5=n/10 | | 5/3x+1/3x=13/3+7/3x | | −4(5y−2)=5(3−4y)−7 | | 36+2x=76 | | -9(x-9=27 | | Y=2,8x+9 | | c/4=1.3 | | 5x+247=15x-13 | | 2*90+2x=76 | | 60–2x=70-4x | | Y(2x+1)=99 | | (3x+36)+54=180 | | 9x-4=24-5x | | -6(x+9)=-60 | | 8/3x+1/3x=22/3+5/8x | | Y=-4+8x | | y×12=48 | | 3+4x=-12x+x | | 7z=10 | | y9=7 | | 9z=11 | | a/16=8 | | z9=11 | | 7(2-x)=17 | | (3x-70)=50 | | 10(x+10)-4=11-5(2x+11 | | 0.5+s=1.4 | | a+0.9=1.9 | | 5a-4/4-a-5/5=20 | | t/6+-3=12 |