3/4x+6=-6+3/8x

Simple and best practice solution for 3/4x+6=-6+3/8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+6=-6+3/8x equation:



3/4x+6=-6+3/8x
We move all terms to the left:
3/4x+6-(-6+3/8x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x-(3/8x-6)+6=0
We get rid of parentheses
3/4x-3/8x+6+6=0
We calculate fractions
24x/32x^2+(-12x)/32x^2+6+6=0
We add all the numbers together, and all the variables
24x/32x^2+(-12x)/32x^2+12=0
We multiply all the terms by the denominator
24x+(-12x)+12*32x^2=0
Wy multiply elements
384x^2+24x+(-12x)=0
We get rid of parentheses
384x^2+24x-12x=0
We add all the numbers together, and all the variables
384x^2+12x=0
a = 384; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·384·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*384}=\frac{-24}{768} =-1/32 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*384}=\frac{0}{768} =0 $

See similar equations:

| 3-n^2=122 | | a9+9=12 | | 36^3x•6^2=1/216 | | 15x-2=3x+4 | | –(10−10c)=2(1−c) | | 1/3y+5=7 | | p^2=-18 | | 12-6x=8x+4 | | 1.2h+1.7=-3.1 | | 15x-15=12x+18 | | 4x+1+6x-3=180 | | 2x-13=-x-22 | | w5+12=13 | | -18x+16=10x | | (4x+15)=63 | | 2x+65º+2x+115º=360º | | X+49=4x+7 | | 13x-18-7x+3=-15 | | 3(n-6)=-21 | | 3n+5n=2 | | 40.32=12.6y | | 6/15=2/3x | | 16u-20=6u | | 2(x–7)=3x | | -3x+6+5x+10=-8 | | 0.6x+3.1=0.5x+1.7 | | (2x-6/)2+3=10 | | 7+b=-16 | | 0.5x+4=-3+0.6x | | 9.5–3.7(x+4)=-20.8–3 | | 5.3v=2.8v+10 | | 0.8c+4=3.6 |

Equations solver categories