3/4x+x-5=10+2x

Simple and best practice solution for 3/4x+x-5=10+2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x+x-5=10+2x equation:



3/4x+x-5=10+2x
We move all terms to the left:
3/4x+x-5-(10+2x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x+x-(2x+10)-5=0
We add all the numbers together, and all the variables
x+3/4x-(2x+10)-5=0
We get rid of parentheses
x+3/4x-2x-10-5=0
We multiply all the terms by the denominator
x*4x-2x*4x-10*4x-5*4x+3=0
Wy multiply elements
4x^2-8x^2-40x-20x+3=0
We add all the numbers together, and all the variables
-4x^2-60x+3=0
a = -4; b = -60; c = +3;
Δ = b2-4ac
Δ = -602-4·(-4)·3
Δ = 3648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3648}=\sqrt{64*57}=\sqrt{64}*\sqrt{57}=8\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-8\sqrt{57}}{2*-4}=\frac{60-8\sqrt{57}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+8\sqrt{57}}{2*-4}=\frac{60+8\sqrt{57}}{-8} $

See similar equations:

| 6=8(s-3/4)-29 | | 3^(6-4x)=4 | | -x+2(7x-3)=-(8x+6) | | 199=150-w | | 2x+18=2x+19 | | 3v+5=2v-4 | | 20x-0.05=10x+0.07 | | 2d=d-18 | | 18+15q=-20+20q-17 | | x/10=125/x | | -4(x+3)=1 | | 53=5y-12 | | 6x(-3x)=9 | | 8n-(2n+5)=11 | | 2x+7=5-(8x-4) | | m+8=18=3m | | 20-0.05x=10+0.07x | | 24-4r=-12(r-6) | | 4(v-3)=-2v-48 | | 2x+7=5-(8x-4 | | 2x+x-60=600 | | 6•7=6•(5+x) | | 18-8v=9-5v | | 9(m-3)+3m=7m+4÷ | | 14e-4=6+6e | | 18-8v= | | 28=-8y+2(y+5) | | -5n+2n=3 | | 2(2n+5)=20 | | 8.28=6r+6 | | 14=6y+8(y-7) | | -13+x=-15 |

Equations solver categories