3/4x-10=2/8x+2

Simple and best practice solution for 3/4x-10=2/8x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x-10=2/8x+2 equation:



3/4x-10=2/8x+2
We move all terms to the left:
3/4x-10-(2/8x+2)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x+2)!=0
x∈R
We get rid of parentheses
3/4x-2/8x-2-10=0
We calculate fractions
24x/32x^2+(-8x)/32x^2-2-10=0
We add all the numbers together, and all the variables
24x/32x^2+(-8x)/32x^2-12=0
We multiply all the terms by the denominator
24x+(-8x)-12*32x^2=0
Wy multiply elements
-384x^2+24x+(-8x)=0
We get rid of parentheses
-384x^2+24x-8x=0
We add all the numbers together, and all the variables
-384x^2+16x=0
a = -384; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-384)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-384}=\frac{-32}{-768} =1/24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-384}=\frac{0}{-768} =0 $

See similar equations:

| 2^2+2x=62 | | 4x=(x+57) | | 14x=147 | | 0.05+2.1x=6.35 | | 87x-1+86x=180 | | 7x-1=4x8 | | r-(-3)=17 | | 65.2=x+5.9 | | z+32=13z-28 | | x+32=45x | | 3x+18-4x=21 | | 2a-49=A+21 | | 3u+62=u+64 | | 34=13v+21 | | z=3z-80 | | 12t+100+6t+62=180 | | 3t+16=8t+1 | | 16u+44=17u+43 | | z+7=4z-20 | | 10+4(=8q-4) | | 6y+7y=39 | | 4z-60=z+39 | | X^2-78x+560=0 | | 2(6b-4)-2(3b+4)=-5b-2-3 | | 2u=u+38 | | 56=6b | | 9•x=x+56 | | 15y-20=55 | | -x+5+4x=5+3x | | x+91=2x | | 2y=y+39 | | 4(2x+8)=-3x-7 |

Equations solver categories