3/4x-2(3x+2)=-25

Simple and best practice solution for 3/4x-2(3x+2)=-25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4x-2(3x+2)=-25 equation:



3/4x-2(3x+2)=-25
We move all terms to the left:
3/4x-2(3x+2)-(-25)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
3/4x-2(3x+2)+25=0
We multiply parentheses
3/4x-6x-4+25=0
We multiply all the terms by the denominator
-6x*4x-4*4x+25*4x+3=0
Wy multiply elements
-24x^2-16x+100x+3=0
We add all the numbers together, and all the variables
-24x^2+84x+3=0
a = -24; b = 84; c = +3;
Δ = b2-4ac
Δ = 842-4·(-24)·3
Δ = 7344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7344}=\sqrt{144*51}=\sqrt{144}*\sqrt{51}=12\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-12\sqrt{51}}{2*-24}=\frac{-84-12\sqrt{51}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+12\sqrt{51}}{2*-24}=\frac{-84+12\sqrt{51}}{-48} $

See similar equations:

| 7n-12=114 | | 50+h+100=180 | | X-y=67 | | 16x-26=3 | | g/10=-5 | | 25b=275 | | 26x-3=16 | | 12p+5=10p+50 | | 7(x-2)-4x=11 | | 20+h+90=180 | | 7x+7=38 | | 26x-16=3 | | 180=3m+12 | | 6b-8=36+10 | | 2)180=3m+12 | | 482=f—-402 | | 3(2x-3)-3x=6x+3x | | w+-416=-712 | | r/2=4.5 | | q+747=871 | | x^2=10^2+26^2 | | 6j=774 | | 0=-5x^2+30x-60 | | 3.2/3x=4 | | h+(h+18)=90 | | -3x+5(x+5)=13 | | 1–x=3x–2 | | 2(x-3)^2=128 | | 9-0.75t=0 | | -5x^2+30x-60=0 | | 3x+156=280 | | 2z×3=18 |

Equations solver categories