If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4x-4=40-2x.
We move all terms to the left:
3/4x-4-(40-2x.)=0
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
3/4x-(-2x.+40)-4=0
We get rid of parentheses
3/4x+2x.-40-4=0
We multiply all the terms by the denominator
(2x.)*4x-40*4x-4*4x+3=0
We add all the numbers together, and all the variables
(+2x.)*4x-40*4x-4*4x+3=0
We multiply parentheses
8x^2-40*4x-4*4x+3=0
Wy multiply elements
8x^2-160x-16x+3=0
We add all the numbers together, and all the variables
8x^2-176x+3=0
a = 8; b = -176; c = +3;
Δ = b2-4ac
Δ = -1762-4·8·3
Δ = 30880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30880}=\sqrt{16*1930}=\sqrt{16}*\sqrt{1930}=4\sqrt{1930}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-176)-4\sqrt{1930}}{2*8}=\frac{176-4\sqrt{1930}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-176)+4\sqrt{1930}}{2*8}=\frac{176+4\sqrt{1930}}{16} $
| 2+a=42 | | 6x−1=x+19 | | h(2)=3^2 | | h(1)=3^1 | | h(0)=3^0 | | h(-1)=3^-1 | | -31=-4n+5 | | h(-2)=3^-2 | | 4(x-5)=2x-12 | | g(0)=0.111 | | g(-1)=9 | | -5m+4=-71 | | 120=12+4x | | g(-2)=81 | | 12+4x=120 | | g(-3)=729 | | 4(x^2+3)=14x | | 1+13x=12x+5 | | f(2)=36 | | 3(2n+3)-(n-4)=33 | | 2x+5=2(x−1) | | f(-1)=0.17 | | f(-1)=0.1666 | | 3x+80=360° | | -3/4n=-2/ | | 10-4|4-5k|=-26 | | -3(4-x)=2(x-5) | | X+2(x-2)3x=35 | | -3+5=-7x-4 | | 7.5x-2.5x=7x-10 | | 4=-0.8y | | 1/4(6x-2)=x-2 |