If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4y+(300-y)=252.5
We move all terms to the left:
3/4y+(300-y)-(252.5)=0
Domain of the equation: 4y!=0We add all the numbers together, and all the variables
y!=0/4
y!=0
y∈R
3/4y+(-1y+300)-(252.5)=0
We add all the numbers together, and all the variables
3/4y+(-1y+300)-252.5=0
We get rid of parentheses
3/4y-1y+300-252.5=0
We multiply all the terms by the denominator
-1y*4y+300*4y-(252.5)*4y+3=0
We multiply parentheses
-1y*4y+300*4y-1010y+3=0
Wy multiply elements
-4y^2+1200y-1010y+3=0
We add all the numbers together, and all the variables
-4y^2+190y+3=0
a = -4; b = 190; c = +3;
Δ = b2-4ac
Δ = 1902-4·(-4)·3
Δ = 36148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36148}=\sqrt{4*9037}=\sqrt{4}*\sqrt{9037}=2\sqrt{9037}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(190)-2\sqrt{9037}}{2*-4}=\frac{-190-2\sqrt{9037}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(190)+2\sqrt{9037}}{2*-4}=\frac{-190+2\sqrt{9037}}{-8} $
| 14v-3(6-v)=8(v9) | | 3=-3(w+89) | | 3(y+4+5y)=y | | 9(d+1)=99 | | 5+(3x^2-7x-30)^(1/2)-(2x^2-7x-5)^(1/2)-x=0 | | q/3–1=1 | | -3+-2m=-19 | | 4+-3g=19 | | (3x^2-7x-30)^(1/2)-(2x^2-7x-5)^(1/2)-x+5=0 | | V5(V6x-4)=-2x | | 2x–7=4x+13 | | 2/15y-3/5=y+1/3y | | c/2+6=18.12 | | 3x+-1=-13 | | Y+4=1/3(4y+7) | | X^4-10x^2-18=0 | | 14(2x+6)/2=14(x+3) | | (x-6)/7=(x+6)/2 | | 5k-(3k+2)=k+12+k | | 62/15=3x-2/3 | | s=2(0-6) | | -2*2-y=-8 | | k/3-4=7 | | 3n–5=10 | | 0=2(p-6) | | m/2+10=14 | | m/2+ 10= 14 | | ((x+4)*2-4)/3=14 | | 9=3+2q | | 3x+33°=8x-47° | | -5(6x-22)=-14x-18+2x-18x+129 | | 7-2y=3y+1 |