3/4y-2=7/8y+3

Simple and best practice solution for 3/4y-2=7/8y+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/4y-2=7/8y+3 equation:



3/4y-2=7/8y+3
We move all terms to the left:
3/4y-2-(7/8y+3)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 8y+3)!=0
y∈R
We get rid of parentheses
3/4y-7/8y-3-2=0
We calculate fractions
24y/32y^2+(-28y)/32y^2-3-2=0
We add all the numbers together, and all the variables
24y/32y^2+(-28y)/32y^2-5=0
We multiply all the terms by the denominator
24y+(-28y)-5*32y^2=0
Wy multiply elements
-160y^2+24y+(-28y)=0
We get rid of parentheses
-160y^2+24y-28y=0
We add all the numbers together, and all the variables
-160y^2-4y=0
a = -160; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-160)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-160}=\frac{0}{-320} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-160}=\frac{8}{-320} =-1/40 $

See similar equations:

| 110/2=x | | (2x-3)(x+4)-8x=10 | | (7x)°+(x-4)°=180 | | 14=8+q | | -48y=-8 | | (7x)°+(x-4)°=189 | | 5x^2+7x=3x^2+2 | | 18x-43=90 | | 2x.3=0 | | 7m‒5=3m+12 | | 2-2=1-x | | 2f+7=18f= | | -2(x+-14)=26 | | -4(3y+-7)=40 | | 1x^2+0x+100=0 | | 6(x+3=2x+42 | | y×y×y-9y=0 | | y3-9y=0 | | -7+7x=6(-2x+3)-3(3x-8) | | X=43x+1=13-x | | 3x+1=13-4 | | 6m+35=-43 | | W(t)=80+5,4t | | 3n+20=2n+20 | | 2x/5-1/5+3/4.x-2/3-6=0 | | 13+23=-4(7x-9) | | 10x=3x-6 | | 7x+11x-5x=65 | | 2x+10+x+8=180 | | 3x+8x+5x=6x+80 | | x^-24=5x | | 2x=18-1 |

Equations solver categories