If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/5(15x+20)=1/3(27x+36)
We move all terms to the left:
3/5(15x+20)-(1/3(27x+36))=0
Domain of the equation: 5(15x+20)!=0
x∈R
Domain of the equation: 3(27x+36))!=0We calculate fractions
x∈R
(9x2/(5(15x+20)*3(27x+36)))+(-5x1/(5(15x+20)*3(27x+36)))=0
We calculate terms in parentheses: +(9x2/(5(15x+20)*3(27x+36))), so:
9x2/(5(15x+20)*3(27x+36))
We multiply all the terms by the denominator
9x2
We add all the numbers together, and all the variables
9x^2
Back to the equation:
+(9x^2)
We calculate terms in parentheses: +(-5x1/(5(15x+20)*3(27x+36))), so:We get rid of parentheses
-5x1/(5(15x+20)*3(27x+36))
We multiply all the terms by the denominator
-5x1
We add all the numbers together, and all the variables
-5x
Back to the equation:
+(-5x)
9x^2-5x=0
a = 9; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·9·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*9}=\frac{10}{18} =5/9 $
| 4y×4y+3=10×10 | | 8g+8=-8 | | X^y=178 | | 4(x−6)=8 | | -18x+24=-12x | | 5x=25/5=17 | | 2(3x-1)=4(10-2x) | | 1.99=x^2-4x+5 | | 2x-16=3x-12+5x | | 32=2x+96 | | 10x+32=15x-28 | | 3x-8+2x=5x+4 | | 7(3x-1)-2x=31 | | 10(z-84)=60 | | 2.32x+4=5.3824+2x | | -21=3c-3(6-2c) | | 8k-25=23 | | 3x+5+25=5x | | -2-1/5x=1/5x+6 | | 7-2(9x+7)=-6 | | -8x+15-4x=-3(4x-5)= | | 5x-10+4x-8=180 | | 5+2x+x=-2 | | 13-3x=52 | | 2(8x-5)-6x+15=10x+5 | | -2(y+3)=3(y+4)+ | | 6j=25+-55 | | 4g=3g+8 | | -109.7+184=t | | -x(x–3)=x^2+3(5–2) | | a+a+a+a=40 | | 8y+2y-10=20 |