3/5b-2+7b-12-2/5b+14=4

Simple and best practice solution for 3/5b-2+7b-12-2/5b+14=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5b-2+7b-12-2/5b+14=4 equation:



3/5b-2+7b-12-2/5b+14=4
We move all terms to the left:
3/5b-2+7b-12-2/5b+14-(4)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
We add all the numbers together, and all the variables
7b+3/5b-2/5b-4=0
We multiply all the terms by the denominator
7b*5b-4*5b+3-2=0
We add all the numbers together, and all the variables
7b*5b-4*5b+1=0
Wy multiply elements
35b^2-20b+1=0
a = 35; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·35·1
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{65}}{2*35}=\frac{20-2\sqrt{65}}{70} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{65}}{2*35}=\frac{20+2\sqrt{65}}{70} $

See similar equations:

| 15-1/8d=-1 | | 14/5=z/24 | | -8n=-5-9n | | -10-2(x+4)+2x=6x+20 | | -8x+38=-3(-6-4x) | | 13a+10-69=31 | | k/4+6=-10 | | 6x+-1=3x+-5 | | 6x=48 | | f-16=-14 | | -13(x+1)=0 | | w/3-8=-3 | | 24x-449=5x+197 | | P(x)=85-3x1x20 | | 3x-8+4x-7=4x | | 8x-13=12-8x | | 35-42x=53+3(-6+7x) | | -6z+1=5-7z | | 3x–18=x+20 | | 4x=2×+16 | | 16x-10=9x-10 | | X=3+12x-10 | | 7-3n=4-(4n-1) | | 5p+10=–4p–8. | | 3/4x+12=−5−2/3x | | 2/9x-3/1=1 | | 3x-4=5 | | –3j+1=–5 | | 1.15​/0.85=k/1.19 | | 1+9=-2(4x-4) | | 1x+1=+5 | | 5n+18=-4(6+4n) |

Equations solver categories