3/5c-25=5+c

Simple and best practice solution for 3/5c-25=5+c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5c-25=5+c equation:



3/5c-25=5+c
We move all terms to the left:
3/5c-25-(5+c)=0
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
We add all the numbers together, and all the variables
3/5c-(c+5)-25=0
We get rid of parentheses
3/5c-c-5-25=0
We multiply all the terms by the denominator
-c*5c-5*5c-25*5c+3=0
Wy multiply elements
-5c^2-25c-125c+3=0
We add all the numbers together, and all the variables
-5c^2-150c+3=0
a = -5; b = -150; c = +3;
Δ = b2-4ac
Δ = -1502-4·(-5)·3
Δ = 22560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22560}=\sqrt{16*1410}=\sqrt{16}*\sqrt{1410}=4\sqrt{1410}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-4\sqrt{1410}}{2*-5}=\frac{150-4\sqrt{1410}}{-10} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+4\sqrt{1410}}{2*-5}=\frac{150+4\sqrt{1410}}{-10} $

See similar equations:

| 3×a/4=7 | | 3y=15y-18 | | 15-4x-32=7x-7x-33 | | 6=8-m/3 | | -3(-6)=y-22 | | 3b-1=25 | | (12+4y^2)^2=0 | | 6x+2=1.5x+47 | | 4x+93=-4x+22 | | 55-5t=0 | | 2=7x2-2 | | 12x+4=-10x+15 | | 3x+5=-2x+5 | | 8y+3y−1+3y−1=180 | | 2x(3x+1=7 | | 44-3x=25 | | 7.5-6x=5.1 | | 3x+13+2x+10+2x+10=180 | | -6x+5-x=-14x+33 | | 56=4v+8 | | 3x/5-9-3x/10=6/10-3x+6/10 | | 100(x)+15000=32000 | | 29-5w=16.5 | | 3.1(4z-1.8)+2=4.6z-11.96 | | w-10=23 | | -12+7x=23 | | 6x-5=2x+8= | | 20-2r=17 | | 2n/3-5/11=95/33 | | 0.5x+4.2=59 | | (x÷7)-4=5 | | 17x-130=280+7× |

Equations solver categories