If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/5k+9/7=6+4/7k
We move all terms to the left:
3/5k+9/7-(6+4/7k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
3/5k-(4/7k+6)+9/7=0
We get rid of parentheses
3/5k-4/7k-6+9/7=0
We calculate fractions
1029k/1715k^2+(-20k)/1715k^2+45k/1715k^2-6=0
We multiply all the terms by the denominator
1029k+(-20k)+45k-6*1715k^2=0
We add all the numbers together, and all the variables
1074k+(-20k)-6*1715k^2=0
Wy multiply elements
-10290k^2+1074k+(-20k)=0
We get rid of parentheses
-10290k^2+1074k-20k=0
We add all the numbers together, and all the variables
-10290k^2+1054k=0
a = -10290; b = 1054; c = 0;
Δ = b2-4ac
Δ = 10542-4·(-10290)·0
Δ = 1110916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1110916}=1054$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1054)-1054}{2*-10290}=\frac{-2108}{-20580} =527/5145 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1054)+1054}{2*-10290}=\frac{0}{-20580} =0 $
| 9(-2-3)-29=8x-(x-23) | | -8+a/4=-6 | | 32×k=224 | | (6x-)+(5x+8)=90 | | 24+b=54 | | 4x+6-(3x-6)=96-4x | | 11(5a+4)=484 | | 4x+20=2x+1 | | 2x-30=3(50+3x) | | -5x+1/4=-3(x-3) | | 7=5+n/7 | | 4v=+6=7V+ | | 90x+120=60x(+x | | x+5+x-6=x+11 | | 8x*6=144 | | 53=-3+8n | | (4x/3)-(1/2x)=0 | | 12x-(6x-8)=14 | | -7+18n=19n | | 15.2-11x=109 | | 0.85x=111 | | 2x+46+3x-15=6x-23 | | 12k-9=11k+19+3k | | 5x+70=90 | | 2x-7+6x+63=34-4x | | 50+55m=200+150m | | 32x.X=2 | | 10x+12=42+5x | | 8(4v-1)=184 | | 16-15z=1-16z | | y-14=39 | | 5/4z+13/16z-5/4=5/2 |