3/5k-1/10=1/2k+1

Simple and best practice solution for 3/5k-1/10=1/2k+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5k-1/10=1/2k+1 equation:



3/5k-1/10=1/2k+1
We move all terms to the left:
3/5k-1/10-(1/2k+1)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 2k+1)!=0
k∈R
We get rid of parentheses
3/5k-1/2k-1-1/10=0
We calculate fractions
(-20k^2)/100k^2+60k/100k^2+(-50k)/100k^2-1=0
We multiply all the terms by the denominator
(-20k^2)+60k+(-50k)-1*100k^2=0
Wy multiply elements
(-20k^2)-100k^2+60k+(-50k)=0
We get rid of parentheses
-20k^2-100k^2+60k-50k=0
We add all the numbers together, and all the variables
-120k^2+10k=0
a = -120; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-120)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-120}=\frac{-20}{-240} =1/12 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-120}=\frac{0}{-240} =0 $

See similar equations:

| 2x+15+2x=x+5 | | 30.46=6g+3.52 | | 8x-9=29 | | 4x=(5-2x)(-3)+3 | | 18=5x+4-3x | | -.02s=100 | | 84=1/2(x)(3x+3) | | -2(2x-4)=6(x-2) | | 2/5x-3=-17 | | -8(x/2-3)=16 | | 3x^2=4+11x | | 4.8=8.8-0.5x | | 4y-4y=7y-8 | | 6/7s-3/4=4/5-1/7s+1/6 | | 4x-4+9x=11 | | 28.8=18n | | 7x-4=-56x | | 4t=-2(8-5t) | | 4/25/6(3/2)-7=-2(3z-4) | | x-4/5=19/30 | | 4/3x=x+22/3 | | 12(3n-7)+8n=-2(4-3)n | | 24n-16=22n-11 | | -9y=31.8 | | 26=x/5+4 | | 4x+7=-(32x+64) | | x2-x/9+54=0 | | x+1=-4+7+6x+1 | | 10-1.2x=1 | | -5+13y+10=16+17y-39 | | 4x-4=9x+11 | | 108=-5(7x-8)-2 |

Equations solver categories