If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/5p+40+p=0
Domain of the equation: 5p!=0We add all the numbers together, and all the variables
p!=0/5
p!=0
p∈R
p+3/5p+40=0
We multiply all the terms by the denominator
p*5p+40*5p+3=0
Wy multiply elements
5p^2+200p+3=0
a = 5; b = 200; c = +3;
Δ = b2-4ac
Δ = 2002-4·5·3
Δ = 39940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39940}=\sqrt{4*9985}=\sqrt{4}*\sqrt{9985}=2\sqrt{9985}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-2\sqrt{9985}}{2*5}=\frac{-200-2\sqrt{9985}}{10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+2\sqrt{9985}}{2*5}=\frac{-200+2\sqrt{9985}}{10} $
| 5y+3y+4(y+3)=180 | | 5y3y+4(y+3)=180 | | 3x+4+4x=26 | | 1.2k=1.44 | | 156=-4(3-7n) | | 1/2(4x)-8=12 | | 4z+2+4z+2+8=180 | | 4x+3x+5x=19 | | Wx(-4)=37 | | 10x+3=303 | | 2x+3+2x+x+1+3+x=360 | | a·0.8=4.8 | | 20-0.5h=18-2h | | 4(p+9)+5=-3 | | 2)x-3)+7-3x=11 | | -3x²+6x.33=0 | | –18+2x=–10 | | 5n2−3=87 | | 2x+3+2x+x+1+x+3=360 | | -12+y/4=9 | | 12x^2+2x=8 | | x+3(x+4)=8 | | -3x-10=-36 | | 12x2+2x=8 | | 15x^2-36x=0 | | 5(m-2)+8m=94 | | 13×-2l=1/2 | | 3d+4–9d+12=(–5d) | | 4=2(−x−3) | | -8 x + (-18) = 54 | | (10x+5)45= | | 30c-12-10c=13 |