3/5x+-3=2/3x+-2

Simple and best practice solution for 3/5x+-3=2/3x+-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x+-3=2/3x+-2 equation:



3/5x+-3=2/3x+-2
We move all terms to the left:
3/5x+-3-(2/3x+-2)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+-2)!=0
x∈R
We add all the numbers together, and all the variables
3/5x-(2/3x-2)-3+=0
We add all the numbers together, and all the variables
3/5x-(2/3x-2)=0
We get rid of parentheses
3/5x-2/3x+2=0
We calculate fractions
9x/15x^2+(-10x)/15x^2+2=0
We multiply all the terms by the denominator
9x+(-10x)+2*15x^2=0
Wy multiply elements
30x^2+9x+(-10x)=0
We get rid of parentheses
30x^2+9x-10x=0
We add all the numbers together, and all the variables
30x^2-1x=0
a = 30; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·30·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*30}=\frac{0}{60} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*30}=\frac{2}{60} =1/30 $

See similar equations:

| .75x-4=22 | | 3(x-2)=-6x | | 3(x-2)=-3x | | -12=p/5-9 | | -12=n/15 | | -4-6v+2v=-24 | | q/7=12 | | 2y/3+y/2=7 | | 2(7=3v)=-29 | | 36÷3=n÷4 | | 3(2x+4)=12-12x | | 2x^2−5x=0 | | 12n+50=164 | | 5(2x+8)=40-15x | | -(-4-5x)=2(2x+4) | | 1/4-1/2p=5/8 | | 3|2x+4|-5=1 | | 3d-7=-4d+140 | | 11r+50=16 | | 2x2−5x=0 | | 2a-5=(-3)a | | 12=n÷4 | | 6+m/2=-4 | | (11t×2)=73 | | p–172= 1 | | 0=-2x^2-2x-4 | | 4(2x+9)=-24+28 | | 126-3q=1q+6 | | 127-3q=1q+6 | | -102=6(-5+2x) | | 129-3q=1q+6 | | (3/4)x-4=22 |

Equations solver categories