3/5x+1/5=7/20x-4

Simple and best practice solution for 3/5x+1/5=7/20x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x+1/5=7/20x-4 equation:



3/5x+1/5=7/20x-4
We move all terms to the left:
3/5x+1/5-(7/20x-4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 20x-4)!=0
x∈R
We get rid of parentheses
3/5x-7/20x+4+1/5=0
We calculate fractions
60x/2500x^2+(-875x)/2500x^2+20x/2500x^2+4=0
We multiply all the terms by the denominator
60x+(-875x)+20x+4*2500x^2=0
We add all the numbers together, and all the variables
80x+(-875x)+4*2500x^2=0
Wy multiply elements
10000x^2+80x+(-875x)=0
We get rid of parentheses
10000x^2+80x-875x=0
We add all the numbers together, and all the variables
10000x^2-795x=0
a = 10000; b = -795; c = 0;
Δ = b2-4ac
Δ = -7952-4·10000·0
Δ = 632025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{632025}=795$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-795)-795}{2*10000}=\frac{0}{20000} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-795)+795}{2*10000}=\frac{1590}{20000} =159/2000 $

See similar equations:

| 9x=117=12 | | 12(2x+2x)=212 | | 12y+5=8y+2 | | 12y+2=4y+8 | | 9=-7m=+1-6 | | -11=-2+x/2 | | 12y+2=8y+8 | | 12y+2=8y+4 | | 12y+2=8y+2 | | 6(5r+11)=216 | | 6y-3=4y+8 | | 12y-13=4y+8 | | 16y+13=4y+8 | | 16y-13=4y+8 | | 6(4n+2)=300 | | 21=x/9+2 | | -y/8=-28 | | 7(n-3)-2(2n+)=4 | | y-6y=17 | | 6.4=2.5-0.6y | | 4m-6=3m-6 | | 5n+6-2n=-3 | | 143=-11(11n+9) | | y+10=3y-8 | | 3p+2=4p-2 | | 128x-16x^2=20 | | 143=-11(11n+9 | | 8y+2=6y-3 | | 4(7-3n)=3n+4 | | 3y+7=5y+8 | | 4(2h+2)-2(h+8)=2(h-8)-4 | | 5n+17+3n+17=180 |

Equations solver categories