3/5x+4=1/2x+9

Simple and best practice solution for 3/5x+4=1/2x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x+4=1/2x+9 equation:



3/5x+4=1/2x+9
We move all terms to the left:
3/5x+4-(1/2x+9)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+9)!=0
x∈R
We get rid of parentheses
3/5x-1/2x-9+4=0
We calculate fractions
6x/10x^2+(-5x)/10x^2-9+4=0
We add all the numbers together, and all the variables
6x/10x^2+(-5x)/10x^2-5=0
We multiply all the terms by the denominator
6x+(-5x)-5*10x^2=0
Wy multiply elements
-50x^2+6x+(-5x)=0
We get rid of parentheses
-50x^2+6x-5x=0
We add all the numbers together, and all the variables
-50x^2+x=0
a = -50; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-50)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-50}=\frac{-2}{-100} =1/50 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-50}=\frac{0}{-100} =0 $

See similar equations:

| 3y+4y+6=22 | | B-6/5=b+6/4 | | 1/6d-13=16 | | (4x+5(22-x))/22=4.86 | | 15+55-39x=-90 | | 3(2x-5)-4x=-9 | | 8-7x+3x=-20 | | a+14=33 | | 1=c+3 | | 1/2(x+3)=x+x | | .15-7m=-5-2m | | 12+x=6x+60 | | 15x-3(x-1)=2(6x+5) | | 2(x-9)+3X=2 | | 15+3x=3+5x | | 17a+9=9 | | -5x-16=3x=-23-9x | | -3/4x-2=3+1/2x | | -11=-b/4−6 | | 2j-3+4j=-56 | | 9(y+6)=5y+42 | | 2x-4-5x=-(x+8)= | | 2.3x-3.7=16.4-4.4x | | -6=-3f | | 2x+4+x=5+3x | | 7x-60=4 | | 4(2x+6)=-28+4 | | x=34/21 | | -4.3w=18 | | 2x+40=7x=10 | | 5x=150-3x | | 7x-21=112 |

Equations solver categories