3/5x-15=6-5x+12

Simple and best practice solution for 3/5x-15=6-5x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-15=6-5x+12 equation:



3/5x-15=6-5x+12
We move all terms to the left:
3/5x-15-(6-5x+12)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
3/5x-(-5x+18)-15=0
We get rid of parentheses
3/5x+5x-18-15=0
We multiply all the terms by the denominator
5x*5x-18*5x-15*5x+3=0
Wy multiply elements
25x^2-90x-75x+3=0
We add all the numbers together, and all the variables
25x^2-165x+3=0
a = 25; b = -165; c = +3;
Δ = b2-4ac
Δ = -1652-4·25·3
Δ = 26925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26925}=\sqrt{25*1077}=\sqrt{25}*\sqrt{1077}=5\sqrt{1077}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-165)-5\sqrt{1077}}{2*25}=\frac{165-5\sqrt{1077}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-165)+5\sqrt{1077}}{2*25}=\frac{165+5\sqrt{1077}}{50} $

See similar equations:

| 4/2z+6=10/7z-2 | | 6x+11=-(6x)+5 | | m∠3+m∠6=180 | | 2/5(7x+2)=-2 | | 3(b+11)=-3 | | 2y+14=1/2(13-y) | | -2+2x-5=4x+2x+29 | | 4=-2(y+-11) | | 7/2z+6=3/z | | 6x+70=5x-47 | | 9(u-89)=45 | | -14+10x=12 | | (14)^(2x+4)=168 | | -7h-10=-5h+8 | | 4/y-3=8/y | | 5/x+3=4/x | | -8-3s=-s | | -2c+9+5c=5c-9 | | 4(x-3)=7x+15 | | 8x-7=-59+4x | | -7-9t=-10t-7 | | 17-2x=1-4x | | 5x+20=8x+40 | | 9(u−89)=45 | | Y=-x^2+5x+12 | | -2-10q=-8q-4 | | -53=-5x+3-3x | | 75b+75b+300b+150b=600 | | -5x-22=3-10x | | 3x=1=-1 | | –36+–n=10 | | 9n=10n-7 |

Equations solver categories