3/5x-17/45=2/9x

Simple and best practice solution for 3/5x-17/45=2/9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-17/45=2/9x equation:



3/5x-17/45=2/9x
We move all terms to the left:
3/5x-17/45-(2/9x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/5x-(+2/9x)-17/45=0
We get rid of parentheses
3/5x-2/9x-17/45=0
We calculate fractions
(-6885x^2)/8100x^2+4860x/8100x^2+(-1800x)/8100x^2=0
We multiply all the terms by the denominator
(-6885x^2)+4860x+(-1800x)=0
We get rid of parentheses
-6885x^2+4860x-1800x=0
We add all the numbers together, and all the variables
-6885x^2+3060x=0
a = -6885; b = 3060; c = 0;
Δ = b2-4ac
Δ = 30602-4·(-6885)·0
Δ = 9363600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9363600}=3060$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3060)-3060}{2*-6885}=\frac{-6120}{-13770} =4/9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3060)+3060}{2*-6885}=\frac{0}{-13770} =0 $

See similar equations:

| 1/2n-3=-71 | | 7n+4n-8+3n-2n=30 | | -5x+20=2x+6 | | 32.15y-21.0005=10.5y | | -5(x-4)=2(x+3) | | 2x-3x=6.4 | | 9+18=x | | 2x-3x=6/4 | | 7+8-x4x=2x+10+3x | | 2x.4=3x+6 | | 2xx4=3x+6 | | |x-2|=6 | | 4x=14+4.5x | | -4(2y)+3y=3(y-4) | | -3(s+5)+(4s+2)=8 | | 4(3x+4)=15(x-2)+1 | | 7o+11=-31 | | 7p+11=-32 | | 6/2x=7 | | 2/6x=25 | | (3u-5)=39 | | 2/6x=7 | | 1-6x=12-7x | | 3(2y)=84 | | 2x=5.666x | | a+10=7a-14 | | 6z+7=2z-2 | | 2x=52/3x | | 4x+8x=9+3 | | 7y-2=2(20) | | 4^(x)-6*2^(x)+8=0 | | 28(t)=-16t^2+50t |

Equations solver categories