3/5x-19=7/2x+25

Simple and best practice solution for 3/5x-19=7/2x+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-19=7/2x+25 equation:



3/5x-19=7/2x+25
We move all terms to the left:
3/5x-19-(7/2x+25)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+25)!=0
x∈R
We get rid of parentheses
3/5x-7/2x-25-19=0
We calculate fractions
6x/10x^2+(-35x)/10x^2-25-19=0
We add all the numbers together, and all the variables
6x/10x^2+(-35x)/10x^2-44=0
We multiply all the terms by the denominator
6x+(-35x)-44*10x^2=0
Wy multiply elements
-440x^2+6x+(-35x)=0
We get rid of parentheses
-440x^2+6x-35x=0
We add all the numbers together, and all the variables
-440x^2-29x=0
a = -440; b = -29; c = 0;
Δ = b2-4ac
Δ = -292-4·(-440)·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-29}{2*-440}=\frac{0}{-880} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+29}{2*-440}=\frac{58}{-880} =-29/440 $

See similar equations:

| x³+3x²+6x+4=0 | | g-7.5=-4.1 | | 12=-6x-2(x+22) | | 7d-15=20 | | -5x+3(-4x-5)=-185 | | (X-8)×x=384 | | t-6.9=2.7 | | D=(3x-2)(7x+1)-2(3x-2) | | -57=-3x+6(-x-17) | | 0.005x=1000 | | 3^x^2-6=81 | | -211=3x+4(-7x+16) | | 6q+15-4q=29 | | 10+×=11x | | 2m–4=10 | | k^2-6k=11 | | 5x-5(6x+4)=230 | | 6=6x-6(-x-17) | | 6=-6(-x-17) | | 3x+16=11x+64 | | 94x-36=100x-66 | | X=(90°+x)+14 | | 149=-2x+3(-5x-7) | | 6y=7.8 | | 4x-51=17 | | 0.04^x=4 | | 2x-(1-2x)=5-3(1-x) | | X=2a-20 | | 6x+4(-4x-6)=84 | | 149=2-+3(-5x-7) | | -3x+3(3x-16)=0 | | 15+7y=8y |

Equations solver categories