If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/5x-2/3+7/3x+1/5=2
We move all terms to the left:
3/5x-2/3+7/3x+1/5-(2)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x!=0determiningTheFunctionDomain 3/5x+7/3x-2-2/3+1/5=0
x!=0/3
x!=0
x∈R
We calculate fractions
81x/675x^2+875x/675x^2+(-250x)/675x^2+27x/675x^2-2=0
We multiply all the terms by the denominator
81x+875x+(-250x)+27x-2*675x^2=0
We add all the numbers together, and all the variables
983x+(-250x)-2*675x^2=0
Wy multiply elements
-1350x^2+983x+(-250x)=0
We get rid of parentheses
-1350x^2+983x-250x=0
We add all the numbers together, and all the variables
-1350x^2+733x=0
a = -1350; b = 733; c = 0;
Δ = b2-4ac
Δ = 7332-4·(-1350)·0
Δ = 537289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{537289}=733$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(733)-733}{2*-1350}=\frac{-1466}{-2700} =733/1350 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(733)+733}{2*-1350}=\frac{0}{-2700} =0 $
| 25^x(1/5)^5x=25 | | 9/10m=5.1 | | 7(x+4)-24=8(x-7)+55 | | X-0.18x=300 | | -2x-3(-3x-6)=-31 | | 8x-5+3x=72 | | |-8x-3|=-35 | | 5x+4(x-1)/3=2 | | -2x+4+3x=72 | | 2.33=-9m | | 6(4x+5)=8(3x-5) | | 2t^2-5T-7=0 | | 3x^2-95x-1000=0 | | .25d+1+(.1d+.05)+.1d=4.65 | | (X+5)2-(x+3)2-(x+1)2=7 | | X+3+2x=x-3 | | 19x+5=39 | | 11x+1=-9x^2 | | .17+4h+2=1-5h17+4h+2=1−5h | | 7x^2=2x-9 | | y^2-10y+6=0 | | 21=7v | | -6n=-4/3 | | 3.5w=31.53.5w=31.5. | | -2.4x+3.7=-16.1+3.1x | | 8x^2+9=-8x | | 15x^2-75x-315=0 | | |2x-3|-4=-3 | | 4x-3=-5+2x+2+2x | | -x^2-8=-6x | | X2+(12-x)2=74 | | 6/4v=-6/9 |