3/5x-2/3=-4/3x+4

Simple and best practice solution for 3/5x-2/3=-4/3x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-2/3=-4/3x+4 equation:



3/5x-2/3=-4/3x+4
We move all terms to the left:
3/5x-2/3-(-4/3x+4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+4)!=0
x∈R
We get rid of parentheses
3/5x+4/3x-4-2/3=0
We calculate fractions
81x/135x^2+20x/135x^2+(-10x)/135x^2-4=0
We multiply all the terms by the denominator
81x+20x+(-10x)-4*135x^2=0
We add all the numbers together, and all the variables
101x+(-10x)-4*135x^2=0
Wy multiply elements
-540x^2+101x+(-10x)=0
We get rid of parentheses
-540x^2+101x-10x=0
We add all the numbers together, and all the variables
-540x^2+91x=0
a = -540; b = 91; c = 0;
Δ = b2-4ac
Δ = 912-4·(-540)·0
Δ = 8281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8281}=91$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(91)-91}{2*-540}=\frac{-182}{-1080} =91/540 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(91)+91}{2*-540}=\frac{0}{-1080} =0 $

See similar equations:

| 2b-5b—11b+-19b+9=-13 | | 12x+7x-6x-11x=-6 | | 4x^2-84x=-432 | | 9k+4k-12k=18 | | 3p/10=-6 | | 10t-8t-1=13 | | 8k+3k+k-6k-5=10 | | 10p+p-7p+2=18 | | 9m-8m=8 | | 3q+17q+-q-20q=-12 | | -3q+5q—10=16 | | -18b+12b+b=15 | | (14x+8)+(4x+28)=180 | | -11g+18g-g=-12 | | -8n+10n+-13+-18n—18n=20 | | 7n-3=11n+2 | | x=135+90 | | 982=58/x | | 7-3n=11+2 | | 16a-7a+2=20 | | 12p+8p-17p=-12 | | 12p+8p-17p=12 | | 2s+4s-5s-s+4s=20 | | 2y/3+1=7y/15+4 | | 2s+s+2s-4s=15 | | r+3r-3r=20 | | 2x6=32x4 | | -4j+3j-8j+15j-20j=14 | | -2(-5x-4)-6=4(3x-3)+5x | | 3-r=r-3 | | 2p-p+4p-3p=20 | | -b+6=(3b+2)-4b |

Equations solver categories